Application of Cellular Automata in Numerical Simulation and Analysis of Metal Corrosion

YAN Guangyao, SUN Dongping, LI Yongqiang, DING Jian, DING Bosong, WANG Ruigang, DONG Bo

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (9) : 50-58.

PDF(5249 KB)
PDF(5249 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (9) : 50-58. DOI: 10.7643/ issn.1672-9242.2025.09.006
Special Topic—Reliability of Ship Equipment

Application of Cellular Automata in Numerical Simulation and Analysis of Metal Corrosion

  • YAN Guangyao1, SUN Dongping1, LI Yongqiang1, DING Jian1, DING Bosong1, WANG Ruigang1, DONG Bo2,*
Author information +
History +

Abstract

The operational mechanisms of cellular automata (CA) for simulating corrosion damage processes are systematically reviewed and the common modeling paradigms within this framework are interpreted. The numerical simulation procedures for both two-dimensional (2D) and three-dimensional (3D) CA applications in corrosion science are elaborated, along with a review of mainstream research achievements leveraging CA-based corrosion modeling. Through critical analysis of existing CA simulation workflows, the methodological advantages of CA models are summarized and the prospects for advancing quantitative corrosion analysis through enhanced CA methodologies are outlined.

Key words

metal corrosion / numerical simulation and analysis / cellular automata / uniform corrosion / intergranular corrosion / pitting corrosion

Cite this article

Download Citations
YAN Guangyao, SUN Dongping, LI Yongqiang, DING Jian, DING Bosong, WANG Ruigang, DONG Bo. Application of Cellular Automata in Numerical Simulation and Analysis of Metal Corrosion[J]. Equipment Environmental Engineering. 2025, 22(9): 50-58 https://doi.org/10.7643/ issn.1672-9242.2025.09.006

References

[1] 刘岩, 刘斌, 石泽耀, 等. 数值仿真技术在腐蚀与防护领域应用研究进展[J]. 装备环境工程, 2020, 17(12): 60-66.
LIU Y, LIU B, SHI Z Y, et al.Application Progress of Numerical Simulation Technology in the Field of Corrosion and Protection[J]. Equipment Environmental Engineering, 2020, 17(12): 60-66.
[2] 陈宝. 应变和吸附物对铝合金典型表/界面性能影响的密度泛函计算[D]. 北京: 北京科技大学, 2022.
CHEN B.Density Functional Calculation of the Effects of Strain and Adsorbents on Typical Surface/Interface Properties of Aluminum Alloys[D]. Beijing: University of Science and Technology Beijing, 2022.
[3] 刘敏. 环境介质及微电偶效应对铝局部腐蚀影响的第一性原理计算[D]. 北京: 北京科技大学, 2019.
LIU M.First-Principles Calculation of the Influence of Environmental Medium and Micro-Galvanic Effect on Local Corrosion of Aluminum[D]. Beijing: University of Science and Technology Beijing, 2019.
[4] PERRY S C, GATEMAN S M, STEPHENS L I, et al.Pourbaix Diagrams as a Simple Route to First Principles Corrosion Simulation[J]. Journal of the Electrochemical Society, 2019, 166(11): C3186-C3192.
[5] DAMIEN F.Introduction to Corrosion for Cellular Automata Modelling[M]. London: European Federation of Corrosion, 2024: 3-21.
[6] SHU G, WANG H T, HAN E H.Cellular Automata Simulation of Pitting Corrosion of Metals: A Review[M]. London: European Federation of Corrosion, 2024: 155-181.
[7] DUNG di C, JACQUES de L. Cellular Automata Modelling Applied to Corrosion[M]. London: European Federation of Corrosion, 2024: 23-43.
[8] GONG K, WU M, LIU X Y, et al.Nucleation and Propagation of Stress Corrosion Cracks: Modeling by Cellular Automata and Finite Element Analysis[J]. Materials Today Communications, 2022, 33: 104886.
[9] PESAVENTO U.An Implementation of von Neumann's Self-Reproducing Machine[J]. Artificial Life, 1995, 2(4): 337-354.
[10] JAHNS K, BALINSKI K, LANDWEHR M, et al.Prediction of High Temperature Corrosion Phenomena by the Cellular Automata Approach[J]. Materials and Corrosion, 2017, 68(2): 125-132.
[11] WOLFRAM S.Cellular Automata as Models of Complexity[J]. Nature, 1984, 311: 419-424.
[12] BERLEKAMP E R, CONWAY J H, GUY R K.Winning Ways for Your Mathematical Plays, Volume 3[M]. Wellesley: AK Peters, 2003.
[13] GARDENER M.Mathematical Games: The Fantastic Combinations of John Conway’s New Solitaire Game life[J]. Scientific American, 1970, 223: 120-123.
[14] SARKAR P.A Brief History of Cellular Automata[J]. ACM Computing Surveys, 2000, 32(1): 80-107.
[15] WOLFRAM S.Statistical Mechanics of Cellular Automata[J]. Reviews of Modern Physics, 1983, 55(3): 601-644.
[16] LISHCHUK S V, AKID R, WORDEN K, et al.A Cellular Automaton Model for Predicting Intergranular Corrosion[J]. Corrosion Science, 2011, 53(8): 2518-2526.
[17] 张喜庆, 滕莹雪, 郭菁. 元胞自动机在金属材料腐蚀研究中的应用[J]. 材料导报, 2023, 37(8): 101-111.
ZHANG X Q, TENG Y X, GUO J.Application of Cellular Automata in the Research of Metal Material Corrosion[J]. Materials Reports, 2023, 37(8): 101-111.
[18] 陈俊尧. 不锈钢在含氧LBE中腐蚀/氧化的元胞自动机模型构建与验证[D]. 北京: 华北电力大学, 2024.
CHEN J Y.Construction and Verification of Cellular Automata Model for Corrosion/Oxidation of Stainless Steel in Oxygen-Containing LBE[D]. Beijing: North China Electric Power University, 2024.
[19] 白凤宇, 王玺. 基于弧底梯形网格的元胞自动机模拟腐蚀形貌的方法[J].航天制造技术, 2022, 6(12): 23-33.
BAI F Y, WANG X.A Method for Simulating Corrosion Morphology Based on Cellular Automaton with Roundness Grid[J]. Aerospace Manufacturing Technology, 2022, 6(12): 23-33.
[20] 宫克. 干湿循环环境中X100管线钢应力腐蚀行为与机理研究[D]. 东营: 中国石油大学(华东), 2022: 41-43.
GONG K.Study on Stress Corrosion Behavior and Mechanism of X100 Pipeline Steel in Dry-Wet Cycling Environment[D]. Dongying: China University of Petroleum (Huadong), 2022: 41-43.
[21] BURSTEIN G T, PISTORIUS P C, MATTIN S P.The Nucleation and Growth of Corrosion Pits on Stainless Steel[J]. Corrosion Science, 1993, 35(1/2/3/4): 57-62.
[22] FATOBA O O, LEIVA-GARCIA R, LISHCHUK S V, et al.Simulation of Stress-Assisted Localised Corrosion Using a Cellular Automaton Finite Element Approach[J]. Corrosion Science, 2018, 137: 83-97.
[23] DI CAPRIO D, VAUTRIN-UL C, STAFIEJ J, et al.Morphology of Corroded Surfaces: Contribution of Cellular Automaton Modelling[J]. Corrosion Science, 2011, 53(1): 418-425.
[24] 唐靖, 李广耀. 基于元胞自动机法的晶间腐蚀仿真建模[J]. 成都大学学报(自然科学版), 2022, 41(3): 287-294.
TANG J, LI G Y.Simulation Modeling of Intergranular Corrosion Based on CA Method[J]. Journal of Chengdu University (Natural Science Edition), 2022, 41(3): 287-294.
[25] 何乐儒, 殷之平, 黄其青, 等. 模拟金属表面局部腐蚀的CA方法[J]. 航空材料学报, 2015, 35(2): 54-63.
HE L R, YIN Z P, HUANG Q Q, et al.Simulation of Local Corrosion on Metal Surface with CA Method[J]. Journal of Aeronautical Materials, 2015, 35(2): 54-63.
[26] CHEN Z W, JIN Y Q, CHEN H, et al.Cellular Automata Simulation of Pitting Corrosion of Stainless Steel in Marine Environments[J]. Materials Today Communications, 2024, 41: 110555.
[27] XU Z H, LU J F, WEI X L, et al.2D and 3D Cellular Automata Simulation on the Corrosion Behaviour of Ni-Based Alloy in Ternary Molten Salt of NaCl-KCl- ZnCl2[J]. Solar Energy Materials and Solar Cells, 2022, 240: 111694.
[28] 华磊, 刘雪峰, 常冬梅. 基于元胞自动机的铝合金多坑腐蚀及疲劳寿命研究[J]. 航空科学技术, 2021, 32(9): 63-67.
HUA L, LIU X F, CHANG D M.Study on Multi-Pits Corrosion of Aluminum Alloy and Its Fatigue Life Based on Cellular Automata[J]. Aeronautical Science & Technology, 2021, 32(9): 63-67.
[29] 翁硕, 孟超, 罗陵华, 等. 基于元胞自动机法的AA7075-T651铝合金在力-化学交互作用下腐蚀损伤特征演化规律研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1507-1517.
WENG S, MENG C, LUO L H, et al.Evolution of Corrosion Damage Characteristics of AA7075-T651 Al-Alloy under Mechanical-Chemical Interaction Based on Cellular Automata Method[J]. Journal of Chinese Society for Corrosion and Protection, 2024, 44(6): 1507-1517.
[30] 潘旭. 考虑腐蚀效应的大跨桥梁钢箱梁疲劳裂纹扩展过程研究[D]. 南京: 东南大学, 2023: 56-57.
PAN X.Study on Fatigue Crack Growth Process of Steel Box Girder of Long-Span Bridge Considering Corrosion Effect[D]. Nanjing: Southeast University, 2023: 56-57.
[31] ROLLIER M, ZIELINSKI K M C, DALY A J, et al. A Comprehensive Taxonomy of Cellular Automata[J]. Communications in Nonlinear Science and Numerical Simulation, 2025, 140: 108362.
[32] 孙运来, 付正鸿, 胡雅楠, 等. 基于元胞自动机方法的U71Mn热轧钢轨均匀腐蚀过程模拟[J]. 固体力学学报, 2024, 45(5): 565-575.
SUN Y L, FU Z H, HU Y N, et al.Simulation of Uniform Corrosion Process of U71Mn Hot-Rolled Rail Based on Cellular Automata[J]. Chinese Journal of Solid Mechanics, 2024, 45(5): 565-575.
[33] 王慧, 宋笔锋, 王乐, 等. 蚀坑几何形貌的三维模拟[J]. 航空学报, 2009, 30(11): 2185-2192.
WANG H, SONG B F, WANG L, et al.Three-Dimensional Computational Simulation of Corrosion Pit Growth Morphology[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(11): 2185-2192.
[34] HUA L, HU Z Y, WU W W, et al.Investigation of Marine Corrosion Characteristics of 10CrNiCu Steel Subjected to Stress Fields Using an Improved 3D Cellular Automata Modeling[J]. Materials & Design, 2025, 250: 113606.
[35] LIU S, XU C Z, ZHAO H J, et al.Research on the Corrosion Behavior Prediction Model of Weathering Steel Composite Bridge Stud Connectors Based on Accelerated Corrosion and Cellular Automata[J]. Construction and Building Materials, 2025, 479: 141494.
[36] CUI C J, MA R J, CHEN A R, et al.Experimental Study and 3D Cellular Automata Simulation of Corrosion Pits on Q345 Steel Surface under Salt-Spray Environment[J]. Corrosion Science, 2019, 154: 80-89.
[37] LU W, JIE Z Y, ZHENG H, et al.Innovative 3D Cellular Automata Simulation of Corrosion Evolution and Mechanical Property in Weathering Steel and Butt Welds[J]. Construction and Building Materials, 2025, 476: 141290.
[38] GUISO S, DI CAPRIO D, DE LAMARE J, et al.Influence of the Grid Cell Geometry on 3D Cellular Automata Behavior in Intergranular Corrosion[J]. Journal of Computational Science, 2021, 53: 101322.
[39] SEREGIN A, KRUPP U, JAHNS K.2D and 3D Numerical Simulation of High-Temperature Corrosion Processes by Means of the Cellular Automata Approach[M]//Corrosion Modelling with Cellular Automata. Amsterdam: Elsevier, 2024: 47-66.
[40] DI CAPRIO D, STAFIEJ J, LUCIANO G, et al.3D Cellular Automata Simulations of Intra and Intergranular Corrosion[J]. Corrosion Science, 2016, 112: 438-450.
PDF(5249 KB)

Accesses

Citation

Detail

Sections
Recommended

/